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istributed transaction-processing systems must manage such functions as 
concurrency, recovery, and replication. One way to improve their effi- 
ciency and reliability is to increase software modularity, which means the 

separate components should execute in separate address spaces to permit hard- 
ware-enforced separation. This structure offers advantages but demands efficient 
interprocess communication (IPC) services. 

In our research at Purdue University, we are investigating mechanisms and 
paradigms for efficient communication support in conventional architectures, 
such as virtual-memory, single-processor machines with no special IPC hardware 
support. (Some mainframes have hardware assistance where more than one 
address space can be accessed at the same time.) 

We are studying communication designs in the context of the Raid system, a 
robust and adaptable distributed database system for transaction processing.' 
Raid has been developed at Purdue on Sun workstations under the Unix operating 
svstem in a local area network. Communication 

software is critical in 
distributed computing 
systems. This research 

identifies efficient 
mechanisms and 

paradigms for 
distributed transaction 

processing in a 
replicated database 

environment. 

In  Raid, each major logical component is implemented as a server, which is a 
process in a separate address space. Servers interact with other processes through 
a high-level communication subsystem. Currently, Raid has six servers for trans- 
action management: the user interface (UI). the action driver (AD), the access 
manager (AM), the atomicity controller (AC), the concurrency controller (CC), 
and the replication controller (RC). High-level name service is provided by a 
separate server, the oracle. 

Raid's communication software, called Raidcomm, has evolved as a result of the 
knowledge we gained from other systems and from our own experiments, which 
are summarized in the following sections. The first version, Raidcomm V.l, was 
developed in 1986. Implemented on top of the SunOS socket-based IPC mecha- 
nism using UDP/IP (User Datagram Protocol/Internet Protocol), it provides a 
clean, location-independent interface between the servers.' To permit defining 
server interfaces in terms of arbitrary data structures, we used Sun's external data 
representation standard, XDR. We developed Raidcomm V.2 in 1990 to provide 
multicasting support for the AC and RC servers. We designed Raidcomm V.3 to 
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support transmission of complex data- 
base objects. It is based on the explicit 
control-passing mechanism and shared 
memory. 

Related research work 

Research in operating systems, mul- 
tiprocessor systems, and computer net- 
works has made useful contributions to 
the field of communication facilities: 

Carnegie Mellon's Camelot proj- 
e ~ t ~ . ~  identified communication sub- 
system requirements. 

Remote procedure call (RPC)-based 
session services support the interaction 
among data servers and applications. 

Highly specialized datagram-based 
communication facilities increase the 
performance demanded by data servers 
and applications. 

Efficient local and remote IPC has 
been investigated in many distributed 
computing systems, for example, the V 
~ y s t e m , ~  Mach: Amoeba,' Sprite,8 and 
x-kernel.' 

We classify the existing communica- 
tion paradigms into three groups: local 
interprocess communication, remote 
interprocess communication, and com- 
munication protocols for both local area 
and wide area networks. 

Local interprocess communication. To 
improve local machine performance, 
Bershad'" introduced two new mecha- 
nisms: lightweight remote procedure call 
(LRPC) and user-level remote proce- 
dure call (URPC). LRPC takes advan- 
tage of the control transfer and commu- 
nication model of capability-based 
systems and the address-space-based 
protection model of traditional IPC fa- 
cilities. URPC. another cross-address- 

space communication facility, eliminates 
the role of the kernel as an IPC interme- 
diary by including communication and 
thread management code in each user 
address space. 

Both LRPC and URPC were imple- 
mented on a DEC SRC Firefly multi- 
processor workstation running the Tao 
operating system.'" A simple cross-ad- 
dress-space call using SRC RPC takes 
464 microseconds on a single C-VAX 
processor. LRPC takes 157 microsec- 
onds for the same call, and using URPC 
reduces the call's latency to 93 micro- 
seconds. 

We've found the ideas used in LRPC 
and URPC applicable in systems such 
as Raid. 

Remote interprocess communication. 
Several message-based operating sys- 
tems can reliably send messages to pro- 
cesses executing on any host in the net- 
work. The V system5 implements address 
spaces, processes, and the interprocess 
communication protocol in the kernel 
to provide a high-performance message- 
passing facility. All high-level system 
services are implemented outside the 
kernel in separate processes. Machh uses 
virtual-memory techniques to optimize 
local IPC. Remote communication goes 
through a user-level server process, 
which adds extra overhead. Amoeba' 
uses capabilities for access control and 
message addresses. It has a small ker- 
nel, and most features are in user pro- 
cesses. 

However, not all the systems use the 
small-kernel approach with remote IPC 
outside the kernel. In Sprite,R the IPC is 
through a pseudodevice mechanism. 
Sprite kernel communication is through 
Sprite kernel-to-kernel RPC. RPC inx- 
kernel9 is also implemented at the ker- 
nel level. Table 1 shows the performance 
of various RPCs over Ethernet. 

Table 1. Performance data for remote procedure calls. (The Sun 3/75 is a 2-MIPS 
machine, and the Sun 3/60 is a 3-MIPS machine.) 

System RPC Type Architecture Latency Latency by MIPS 

User level Sun 3/75 2.50 ms 5.0 ms 
11.00 ms 33.0 ms 

Amoeba User level Sun 3/60 1.10ms 3.3 ms 
Sprite Kernel level Sun 3/75 2.45 ms 4.9 ms 
x-kernel Kernel level Sun 3/75 1.70 ms 3.4 ms 
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Communication protocols. Commu- 
nication protocols provide a standard 
way to communicate between hosts con- 
nected by a network. Datagram proto- 
cols such as IP are inexpensive but un- 
reliable. However, more reliable 
protocols, such as virtual-circuit and 
request-response protocols, can be built 
on top of datagram protocols. 

The versatile message transaction 
protocol (VMTP) is a transport-level 
protocol that supports the intrasystem 
model of distributed pro~essing.~ Page- 
level file access, remote procedure calls, 
real-time datagrams, and multicasting 
dominate the communication activities. 
VMTP provides two facilities, stable 
addressing and message transactions, 
useful for implementing conversations 
at higher levels. A stable address can be 
used in multiple message transactions, 
as long as it remains valid. A message 
transaction is a reliable request-response 
interaction between addressable net- 
work entities (ports, processes, proce- 
dure invocations). Multicasting, data- 
grams, and forwarding services are 
provided as variants of the message 
transaction mechanism. 

Using virtual protocols and layered 
protocols, the x-kernel implements gen- 
eral-purpose yet efficient R P C ~ . ~ v i r t u -  
a1 protocols are demultiplexers that route 
the messages to appropriate lower level 
protocols. For example, in an Internet 
environment, a virtual protocol will 
bypass the Internet Protocol for mes- 
sages originatingand ending in the same 
network. The support of atomic broad- 
casting and failure detection within the 
communication subsystem simplifies 
transaction-processing software and 
optimizes network broadcasting capa- 
bilities." For example, a two-phase com- 
mit protocol can be implemented by 
atomic broadcasting. 

Studies and 
enhancements 

We have conducted a series of exper- 
iments on the performance of the facil- 
ities available for building the Raid com- 
munication software.2,'2 

Experimental measurements and ob- 
servations. The measurements were 
done on Sun 3150s (1-MIPS machines) 
that use the SunOS 4.0 operating sys- 
tem. We configured one workstation 
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with a special microsecond 
resolution clock to measure 
elapsed times. (This timer 
board, developed by Peter 
Danzig and Steve Melvin, 
uses Advanced Micro De- 
vices' AM9513A timer chip. 
The timer has a resolution 
of up to four ticks per micro- 
second, and the overhead to 
read a time stamp is approx- 
imately 20 microseconds.) 

Our experimental work 
focused on general-purpose 
interprocess communication 
facilities, multicasting, and 
the impact of interprocess 
communication on distrib- 
uted transaction-processing 
performance. 

Communication. We mea- 
sured the overhead intro- 
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Figure 1. Timing for a User Datagram Protocol send. 

duced by the layers of the socket-based 
interprocess communication model for 
datagram communication (UDP).These 
layers include the system call mecha- 
nism, the socket abstraction, communi- 
cation protocols (UDP, IP, and Ether- 
net), and interrupt processing. 

Figure 1 shows each layer's contribu- 
tion to the total time of the send opera- 
tion of user-level messages. We found 
that the socket abstraction, which in- 
cluded copying the message between 
user and kernel spaces, was expensive. 
Starting the physical device required 
approximately 20 percent of the total 
send time. The peaks are due to the 
SunOS's special memory allocation pol- 
icy.'* 

We investigated several mechanisms, 
including message queues, named pipes, 
shared memory synchronized by two 
semaphores, and UDP sockets in both 
the Internet and Unix domains. We mea- 
sured the round-trip time for a null mes- 
sage for each of these methods. We 
measured message queues at 1.7 milli- 
seconds, named pipes at 1.8 millisec- 
onds, shared memory with semaphores 
at 2.5 milliseconds, the Internet domain 
UDP socket at 4.4 milliseconds, and the 
Unix domain UDP socket at 3.6 milli- 
seconds. 

Multicasting. We studied several ap- 
proaches to multicasting. The first two 
alternatives are based on the Simple 
Ethernet (SE), a suite of protocols that 
provide low-level access to the Ether- 
net.'*The user-level SE multicast utility 

is implemented on top of the SE device 
driver, which provides point-to-point 
Ethernet communication. The kernel- 
level SE multicast utility uses the multi- 
SE device driver. Finally, we experi- 
mented with physical multicasting. 
Although physical multicasting mini- 
mizes bandwidth, it demands a priori 
knowledge of the multicast address by 
all group members. This requirement 
may incur extra messages to set up the 
address. 

Impact. To observe the impact of Raid- 
comm V.l IPC on Raid's transaction- 
processingperformance, we ran the Deb- 
itcredit benchmark.'* (Known as TP1 
or ET1, Debitcredit is a simple yet real- 
istic transaction-processing benchmark 
that uses a small banking database of 
three relations and 100-byte tuples.) The 
ratio of user times to system times for 
different servers is 2:l. Most of the sys- 
tem times are incurred by the communi- 
cation activities. 

Results. Details on the setup, proce- 
dures, and analysis of our experiments 
can be found elsewhere.*.'* Below, we 
summarize only the major lessons and 
observations. 

Expensive.  General-purpose com- 
munication facilities are too expen- 
sive,'OJ* even though many abstractions 
and mechanisms are useful to support a 
variety of applications and users. Mes- 
sages have to go through several unnec- 
essary layers of the communication sub- 

system. To overcome these 
problems, we recommend us- 
ing a simple IPC memory man- 
agement mechanism. Virtual 
and/or layered protocols in x- 
kernel and VMTP provide 
support to avoid such over- 
head. 

Communication intensive. 
Transaction-processing sys- 
tems are communication in- 
t e n ~ i v e , ~  and most of the 
communication is local rath- 
er than remote.'O If the local 
communication is handled as 
a particular instance of the 
remote case, the operating sys- 
tem kernel becomes the sys- 
tem bottleneck because of the 
high message traffic and the 
high cost to process messag- - 
es. Communication facilities 
specialized for the local case 

can be simpler and more efficient. 
Communicat ion support.  Some op- 

erating systems do not provide enough 
communication support for distributed 
transaction processing. The transaction- 
processing system implementer has to 
supply these services. It is desirable to 
define high-level interfaces between the 
modules. For communication, the mod- 
ules use typed messages rather than sim- 
ple buffers of bytes supported by the 
operating system. To be sent, a message 
has to be marshaled into kernel buffers. 
The receiving side must perform the 
inverse operation. 

Multicasting. General-purpose mul- 
ticasting mechanisms require group ini- 
tialization and maintenance. In distrib- 
uted transaction processing, multicasting 
groups are typically dynamic and short 
lived. In this case, the overhead of group 
initialization can obliterate the perfor- 
mance advantages of multicasting. Our 
experiment shows that simulating mul- 
ticasting inside the kernel reduces CPU 
overhead.I2 Cheritod has proposed mul- 
ticasting for many applications. We sug- 
gest that the group (multicasting) ad- 
dresses used during commitment time 
be established as a function of the unique 
transaction ID. This eliminates the need 
for extra messages to set up group ad- 
dresses. 

N a m e  resolution. Name resolution 
can become an expensive and compli- 
cated process. In general, we can have 
three different name spaces: applica- 
tion name space, interprocess commu- 
nication name space, and network name 
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space. The Raid system uses 
a special protocol to map Raid 
names into interprocess com- 
munication addresses (UDP/ 
IP addresses). These address- 
es have to be mapped into 
network addresses (for ex- 
ample, Ethernet addresses) 
via a second address resolu- 
tion protocol. For a local area 
network, a straightforward 
correspondence between log- 
ical and physical communi- 
cation addresses can be es- 
tablished. 

Enhancements. The Raid- 
comm V.2 implementation 
for local area networks em- 
ploys low overhead, simple 
naming, and transaction- 
oriented multicast support. 
Some of theseideas are based 
on LRPC and URPC.l0 Be- 
low, we briefly discuss Dorts. 
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Figure 2. Round-trip times in milliseconds. 

naming, multicasting schemes, and com- 
munication primitives. (Details can be 
found elsewhere.’*) 

Ports. Processes communicate through 
ports, which are the basic communica- 
tion abstraction. These ports reside in a 
memory segment shared by the process 
and kernel address spaces. Thus, data 
can be exchanged without copying. This 
method reduces copying by 50 percent 
compared with other kernel-based IPC 
methods. The mapped memory segment 
contains a transmission buffer and a set 
of receiving buffers. The number and 
length of these buffers are specified by 
a process at the time it opens a port. The 
receiving buffers form a circular queue, 
which is coherently managed by the 
kernel and the process according to the 
conventional producer/consumer para- 
digm. Associated with the transmission 
buffer and each of the receiving buffers 
is an integer, which specifies the actual 
length of the message. In addition, there 
is a counter for the number of active 
messages (messages that have arrived, 
but which the server has not yet pro- 
cessed). 

Naming.  Within a given node, ports 
are uniquely identified by the triplet 
<Raid instance number, server type, 
server instance>. The other component 
of a Raid address, the site number or 
the transaction ID, determines the ad- 
dress of the physical node for monocast 
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or the addresses of the group of nodes 
for multicast. In the case of Ethernet, 
we use only multicasting addresses for 
link-level communication. Site numbers 
or transaction IDS are used to build 
multicasting addresses by copying them 
into the four more-significant bytes of 
the Ethernet address. 

Multicasting. In physical multicasting 
for processing a given transaction’s data 
requests, each participant site sets a 
multicasting address using the transac- 
tion ID as its four more-significant bytes. 
At commitment time, the coordinator 
uses this address to multicast messages 
to all participant sites. This avoids the 
overhead of other multicasting meth- 
ods. Currently, multicast addresses are 
added or deleted by Raid servers. The 
RC adds a new multicasting address for 
a transaction when it receives the first 
operation request for that transaction. 
Under normal conditions, the AC de- 
letes the multicasting address once the 
transaction is committed or aborted. In 
the presence of failures, the CC does 
this job as part of its cleanup procedure. 
In the future, we plan to manage the 
multicasting addresses in the communi- 
cation subsystem. 

Communicat ion  primitives. System 
calls are provided to open and close a 
port, to send a message, and to add or 
delete a multicasting address. There is 
no need for an explicit receive system 

call. If idle, a receiving pro- 
cess must wait for a signal 
(and the corresponding mes- 
sage) to arrive. To  send a 
message, a process writes it 
into the transmission buffer 
and passes control to the 
kernel. If the message is lo- 
cal, it is copied into a receiv- 
ing buffer of the target port, 
and the port’s owner is sig- 
naled (the owning process’ 
ID is stored in the port’s data 
structure). We use the Unix 
Sigio signal for this purpose. 
Otherwise, one of the exist- 
ing network device drivers 
sends the message to its des- 
tination. The send operation 
will be aborted if there are 
not enough receiving buff- 
ers. The destination address 
is constructed as described 
above, and the message is 
enqueued into the device’s 

output queue. When a message arrives 
over the network, it is demultiplexed to 
its corresponding port. Again, a signal 
alerts the receiving process about the 
incoming message. All this is done at 
interrupt time, so there is no need to 
schedule further software interrupts. 

Performance of the communication 
primitives. We measured the latency of 
a user-to-user round trip of local inter- 
process communication in Raidcomm 
V.l and V.2. In version 2 it is 1.4 milli- 
seconds, compared with the 4.4 milli- 
seconds of the UDP socket used in ver- 
sion 1. In version 1 the round-trip time 
increases by a 1-millisecond average for 
each kilobyte of data; in version 2 the 
round-trip time increases by 0.34 milli- 
second for each additional kilobyte. The 
latency of a user-to-user round-trip re- 
mote communication reduces from 5.1 
milliseconds in version 1 to 2.7 millisec- 
onds in version 2. The round-trip time 
increase for each kilobyte of data also 
reduces from about 3.0 milliseconds to 
2.5 milliseconds. (See Figure 2.) 

The socket-based IPC in version 1 
and the new communication facility in 
version 2 provide the same functional- 
ity in a local area network environment, 
and both are equally affected by signif- 
icant network device-driver overhead. 
Despite this fact, the new communica- 
tion facility achieves improvements of 
up to 50 percent. For multicasting, the 
performance advantages of the new com- 
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munication facility become 
even more significant. The 
sending time does not depend 
on the number of destina- 
tions. On the other hand, the 
multicasting time for the 
socket IPC method grows lin- 
early with the number of des- 
tinations. 

Socket-based IPC does not 
optimize for the local case. 
Local round-trip costs are 68 
to 88 percent of those for 
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Figure 3. Performance of a context switch on the Sun 3/50 
running SunOS 4.0. 

remote round trips. In the 
new communication sub- 
system, local round-trip times are only 
35 to 50 percent of the corresponding 
remote round-trip times. 

Impact on transaction processing. We 
ran the Debitcredit benchmark on a 
single-site and a five-site system. For 
the five-site system, we used the ROWA 
(read-once, write-all) replication meth- 
od. This limited remote communication 
to the AC server. The benchmark con- 
tained 115 transactions that had write 
operations and required access to re- 
mote sites in the two-phase commit pro- 
tocol. Using Raidcomm V.2 reduced 
the system time for transaction process- 
ing by an average of 62 percent, bringing 
theuser-time tosystem-time ratio to3:1.12 

Other issues. In Raidcomm V.3, we 
are addressing some problems with 
XDR, scheduling, and context switch- 
ing. 

X D R .  New applications require the 
underlying communication subsystem 
to provide cheap transportation for com- 
plex data objects. The transmitted data 
structures are usually bounded linear 
buffers. We can build our local commu- 
nication channel in shared memory to 
avoid multiple encodingldecoding. Un- 
like lower level buffer-based communi- 
cation resources, which are one dimen- 
sional and usually accessible only as a 
whole, the shared memory segments 
are multidimensional, randomly ad- 
dressed storage resources just like the 
main memory. These schemes can elim- 
inate the overhead of XDR in local 
communication. 

Scheduling. Scheduling policies should 
consider high-level relationships that 
may exist among a group of processes. 
Conflicts may exist between the optimi- 
zation criteria at the operating system 

and application levels. The application 
should have some way to partially con- 
trol CPU allocation. The sender and the 
receiver process can collaborate under 
some high-level mechanism provided 
by the operating system to transfer the 
thread of control. In Unix, for example, 
the receiver process often goes to sleep 
to lower its priority. It is then put in a list 
and waits for the event (UO, signals) 
that will grant it CPU time. 

Context switching. We also conduct- 
ed a series of experiments on context 
switching, based on the idea of explicit 
thread control passing. This is similar to 
the hand-off scheduling in Mach, but 
we’ve extended it to schedule ordinary 
processes in Unix. Figure 3 shows round- 
trip times for a context switch between 
two processes. Raidcomm V.3 uses an 
explicit control-passing mechanism and 
shared memory. This reduces the laten- 
cy of sending a high-level monocast Raid 
message to 0.68 millisecond. It was 2.4 
milliseconds in Raidcomm V. 1, and 1.1 
millisecond in Raidcomm V.2. 

verall, we have identified sev- 
eral communication services 0 and mechanisms that can make 

Raid efficient. Separate address spaces 
can be used to structure a DTP system. 
High interaction among servers also trig- 
gers costly context-switching activity in 
the system. Increasing availability 
through distribution and replication of 
data demands special-purpose multicast- 
ing mechanisms. The idea of shared 
memory between the kernel and user 
processes is appealing, since it reduces 
context-switching activity. The identifi- 
cation of sites involved in transaction 
processing for accessing replicated data 
can be used in physical multicasting. 

Our work has studied Unix-like oper- 

ating systems. Obviously, 
Unix is not the only system 
on which commercialsystems 
might be built, but it does 
provide a good benchmark 
for experimental study of 
new ideas in an academic 
setting. Our work has been 
conducted in a local area 
network environment. Simi- 
lar studies must be under- 
taken to identify and reduce 
the overhead in wide area 
networks. 

We believe communica- 
tions hardware and media technology is 
advancing at a rapid pace. Our research, 
along with related work in industry and 
academia, is intended to promote soft- 
ware advances. 
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software development tools. sdldt case studlea of fool appiicatkns and thdr Impact on pmducllvlly, and examine stretegies fur the evaluation of future 
tools. A particular focus will be on the assessment of tools to assist with producllvlty and quallty in software devebpment. 

Papers appropriate to the symposium are: studies of existing tools automating m e  task In software design, analysis, implementatbn, testing or 
maintenance. The program annmiltee invites submission of completed original papers, not submitted to any other meeting or publication, addressing 
(but not llmlted to) the folkwing areas: 

Quality DeveiopmonnVDesign tools, CASE environments 
Quality Analysis tool8 
TestNwiticstionNaiidation toois 
Design Automation tod. 

Prototyplng tools 
Knowidge-based I Expewi Systems 
Program Understanding and Reverse Engineering tools 
Experience with tool introduction and practical use 

Please submit Rve (5) atples of full papers in English by Novombw 27,1091 
to the Program Chair: 

Ez Nahourall. IBM (798/089), 6321 San lgnado Avenue, San Jose, CA 951 19 USA 
(408) 281-5741 eznah@sthrm7.iinusl .Ibm.com 

For information and registration, mtact: 
Judy Lee, IW. loo0 NW 51 St.. 6oca Raton, FL 33432 USA (407) 982-1048 

important Dates: 
Paper deadline: November 27,1991; Authors notification: F & N ~  14.1992 

Sponsored by: Tuhne University 
In Cooperation: IEEE Computer Society TCSE @$@ 4) 

General Conference Chair: 
Dr. J. Browne. U. Texas Austin 8 Dr. J. Hassell, Tulane Univ. 

Program Chair: Ez ”ural l ,  IBM 

Program Committee: 
D. 6eIanger. ATBT Bell Labs. F. Petry, Tulane Univ. 
J. Cameron, LBMS U.K. C. Richter, MCC 
E. Chikofsky, Progress Software S. ShaQ, U. lllinols - Chicago 
Y. Fujlwara, Univ Tsukuba Japan D. Soni, Siemens 
A. L. Goel, Syracuse Univ. L. Tripp, Boeing 
J. Jenkins, City Univ. London others... 
C. Lamy, IBM France 

With Assistance: IBM Systems & Software Education 

Charles F. Golrlfarb, IBM Almaden Resiwrch Center 

HvTime is being develomd as an ment. DIUS the large caDital and orga- and SPDL. Some industrv standards 
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