
Communication Facilities
for Distributed
Transaction-Processing
Systems
Enrique Mafla and Bharat Bhargava, Purdue University

istributed transaction-processing systems must manage such functions as
concurrency, recovery, and replication. One way to improve their effi-
ciency and reliability is to increase software modularity, which means the

separate components should execute in separate address spaces to permit hard-
ware-enforced separation. This structure offers advantages but demands efficient
interprocess communication (IPC) services.

In our research at Purdue University, we are investigating mechanisms and
paradigms for efficient communication support in conventional architectures,
such as virtual-memory, single-processor machines with no special IPC hardware
support. (Some mainframes have hardware assistance where more than one
address space can be accessed at the same time.)

We are studying communication designs in the context of the Raid system, a
robust and adaptable distributed database system for transaction processing.'
Raid has been developed at Purdue on Sun workstations under the Unix operating
svstem in a local area network. Communication

software is critical in
distributed computing
systems. This research

identifies efficient
mechanisms and

paradigms for
distributed transaction

processing in a
replicated database

environment.

In Raid, each major logical component is implemented as a server, which is a
process in a separate address space. Servers interact with other processes through
a high-level communication subsystem. Currently, Raid has six servers for trans-
action management: the user interface (UI). the action driver (AD), the access
manager (AM), the atomicity controller (AC), the concurrency controller (CC),
and the replication controller (RC). High-level name service is provided by a
separate server, the oracle.

Raid's communication software, called Raidcomm, has evolved as a result of the
knowledge we gained from other systems and from our own experiments, which
are summarized in the following sections. The first version, Raidcomm V.l, was
developed in 1986. Implemented on top of the SunOS socket-based IPC mecha-
nism using UDP/IP (User Datagram Protocol/Internet Protocol), it provides a
clean, location-independent interface between the servers.' To permit defining
server interfaces in terms of arbitrary data structures, we used Sun's external data
representation standard, XDR. We developed Raidcomm V.2 in 1990 to provide
multicasting support for the AC and RC servers. We designed Raidcomm V.3 to

August 1991 0018-916219110800 0061$01 00 D 1991 IEEE 61

Administrator
Highlight

Administrator
Sticky Note

support transmission of complex data-
base objects. It is based on the explicit
control-passing mechanism and shared
memory.

Related research work

Research in operating systems, mul-
tiprocessor systems, and computer net-
works has made useful contributions to
the field of communication facilities:

Carnegie Mellon's Camelot proj-
e ~ t ~ . ~ identified communication sub-
system requirements.

Remote procedure call (RPC)-based
session services support the interaction
among data servers and applications.

Highly specialized datagram-based
communication facilities increase the
performance demanded by data servers
and applications.

Efficient local and remote IPC has
been investigated in many distributed
computing systems, for example, the V
~ y s t e m , ~ Mach: Amoeba,' Sprite,8 and
x-kernel.'

We classify the existing communica-
tion paradigms into three groups: local
interprocess communication, remote
interprocess communication, and com-
munication protocols for both local area
and wide area networks.

Local interprocess communication. To
improve local machine performance,
Bershad'" introduced two new mecha-
nisms: lightweight remote procedure call
(LRPC) and user-level remote proce-
dure call (URPC). LRPC takes advan-
tage of the control transfer and commu-
nication model of capability-based
systems and the address-space-based
protection model of traditional IPC fa-
cilities. URPC. another cross-address-

space communication facility, eliminates
the role of the kernel as an IPC interme-
diary by including communication and
thread management code in each user
address space.

Both LRPC and URPC were imple-
mented on a DEC SRC Firefly multi-
processor workstation running the Tao
operating system.'" A simple cross-ad-
dress-space call using SRC RPC takes
464 microseconds on a single C-VAX
processor. LRPC takes 157 microsec-
onds for the same call, and using URPC
reduces the call's latency to 93 micro-
seconds.

We've found the ideas used in LRPC
and URPC applicable in systems such
as Raid.

Remote interprocess communication.
Several message-based operating sys-
tems can reliably send messages to pro-
cesses executing on any host in the net-
work. The V system5 implements address
spaces, processes, and the interprocess
communication protocol in the kernel
to provide a high-performance message-
passing facility. All high-level system
services are implemented outside the
kernel in separate processes. Machh uses
virtual-memory techniques to optimize
local IPC. Remote communication goes
through a user-level server process,
which adds extra overhead. Amoeba'
uses capabilities for access control and
message addresses. It has a small ker-
nel, and most features are in user pro-
cesses.

However, not all the systems use the
small-kernel approach with remote IPC
outside the kernel. In Sprite,R the IPC is
through a pseudodevice mechanism.
Sprite kernel communication is through
Sprite kernel-to-kernel RPC. RPC inx-
kernel9 is also implemented at the ker-
nel level. Table 1 shows the performance
of various RPCs over Ethernet.

Table 1. Performance data for remote procedure calls. (The Sun 3/75 is a 2-MIPS
machine, and the Sun 3/60 is a 3-MIPS machine.)

System RPC Type Architecture Latency Latency by MIPS

User level Sun 3/75 2.50 ms 5.0 ms
11.00 ms 33.0 ms

Amoeba User level Sun 3/60 1.10ms 3.3 ms
Sprite Kernel level Sun 3/75 2.45 ms 4.9 ms
x-kernel Kernel level Sun 3/75 1.70 ms 3.4 ms

62

_-

Communication protocols. Commu-
nication protocols provide a standard
way to communicate between hosts con-
nected by a network. Datagram proto-
cols such as IP are inexpensive but un-
reliable. However, more reliable
protocols, such as virtual-circuit and
request-response protocols, can be built
on top of datagram protocols.

The versatile message transaction
protocol (VMTP) is a transport-level
protocol that supports the intrasystem
model of distributed pro~essing.~ Page-
level file access, remote procedure calls,
real-time datagrams, and multicasting
dominate the communication activities.
VMTP provides two facilities, stable
addressing and message transactions,
useful for implementing conversations
at higher levels. A stable address can be
used in multiple message transactions,
as long as it remains valid. A message
transaction is a reliable request-response
interaction between addressable net-
work entities (ports, processes, proce-
dure invocations). Multicasting, data-
grams, and forwarding services are
provided as variants of the message
transaction mechanism.

Using virtual protocols and layered
protocols, the x-kernel implements gen-
eral-purpose yet efficient R P C ~ . ~ v i r t u -
a1 protocols are demultiplexers that route
the messages to appropriate lower level
protocols. For example, in an Internet
environment, a virtual protocol will
bypass the Internet Protocol for mes-
sages originatingand ending in the same
network. The support of atomic broad-
casting and failure detection within the
communication subsystem simplifies
transaction-processing software and
optimizes network broadcasting capa-
bilities." For example, a two-phase com-
mit protocol can be implemented by
atomic broadcasting.

Studies and
enhancements

We have conducted a series of exper-
iments on the performance of the facil-
ities available for building the Raid com-
munication software.2,'2

Experimental measurements and ob-
servations. The measurements were
done on Sun 3150s (1-MIPS machines)
that use the SunOS 4.0 operating sys-
tem. We configured one workstation

COMPUTER

Charles F. Golrlfarb, I B M Almaden Resecirch Center

HvTime is being develoDed as an ment. Dlus the large caDital and orga- and SPDL. Some industrv standards

with a special microsecond
resolution clock to measure
elapsed times. (This timer
board, developed by Peter
Danzig and Steve Melvin,
uses Advanced Micro De-
vices' AM9513A timer chip.
The timer has a resolution
of up to four ticks per micro-
second, and the overhead to
read a time stamp is approx-
imately 20 microseconds.)

Our experimental work
focused on general-purpose
interprocess communication
facilities, multicasting, and
the impact of interprocess
communication on distrib-
uted transaction-processing
performance.

Communication. We mea-
sured the overhead intro-

5

4

h

v E 3

F 2

1

0

Interrupt

Device

Ethernet

IP
UDP

Socket

Syscall
-

I I I I I I
0 500 1,OOO 1,500 2,000 2,500

Packet length (bytes)

Figure 1. Timing for a User Datagram Protocol send.

duced by the layers of the socket-based
interprocess communication model for
datagram communication (UDP).These
layers include the system call mecha-
nism, the socket abstraction, communi-
cation protocols (UDP, IP, and Ether-
net), and interrupt processing.

Figure 1 shows each layer's contribu-
tion to the total time of the send opera-
tion of user-level messages. We found
that the socket abstraction, which in-
cluded copying the message between
user and kernel spaces, was expensive.
Starting the physical device required
approximately 20 percent of the total
send time. The peaks are due to the
SunOS's special memory allocation pol-
icy.'*

We investigated several mechanisms,
including message queues, named pipes,
shared memory synchronized by two
semaphores, and UDP sockets in both
the Internet and Unix domains. We mea-
sured the round-trip time for a null mes-
sage for each of these methods. We
measured message queues at 1.7 milli-
seconds, named pipes at 1.8 millisec-
onds, shared memory with semaphores
at 2.5 milliseconds, the Internet domain
UDP socket at 4.4 milliseconds, and the
Unix domain UDP socket at 3.6 milli-
seconds.

Multicasting. We studied several ap-
proaches to multicasting. The first two
alternatives are based on the Simple
Ethernet (SE), a suite of protocols that
provide low-level access to the Ether-
net.'*The user-level SE multicast utility

is implemented on top of the SE device
driver, which provides point-to-point
Ethernet communication. The kernel-
level SE multicast utility uses the multi-
SE device driver. Finally, we experi-
mented with physical multicasting.
Although physical multicasting mini-
mizes bandwidth, it demands a priori
knowledge of the multicast address by
all group members. This requirement
may incur extra messages to set up the
address.

Impact. To observe the impact of Raid-
comm V.l IPC on Raid's transaction-
processingperformance, we ran the Deb-
itcredit benchmark.'* (Known as TP1
or ET1, Debitcredit is a simple yet real-
istic transaction-processing benchmark
that uses a small banking database of
three relations and 100-byte tuples.) The
ratio of user times to system times for
different servers is 2:l. Most of the sys-
tem times are incurred by the communi-
cation activities.

Results. Details on the setup, proce-
dures, and analysis of our experiments
can be found elsewhere.*.'* Below, we
summarize only the major lessons and
observations.

Expensive. General-purpose com-
munication facilities are too expen-
sive,'OJ* even though many abstractions
and mechanisms are useful to support a
variety of applications and users. Mes-
sages have to go through several unnec-
essary layers of the communication sub-

system. To overcome these
problems, we recommend us-
ing a simple IPC memory man-
agement mechanism. Virtual
and/or layered protocols in x-
kernel and VMTP provide
support to avoid such over-
head.

Communication intensive.
Transaction-processing sys-
tems are communication in-
t e n ~ i v e , ~ and most of the
communication is local rath-
er than remote.'O If the local
communication is handled as
a particular instance of the
remote case, the operating sys-
tem kernel becomes the sys-
tem bottleneck because of the
high message traffic and the
high cost to process messag- -
es. Communication facilities
specialized for the local case

can be simpler and more efficient.
Communicat ion support. Some op-

erating systems do not provide enough
communication support for distributed
transaction processing. The transaction-
processing system implementer has to
supply these services. It is desirable to
define high-level interfaces between the
modules. For communication, the mod-
ules use typed messages rather than sim-
ple buffers of bytes supported by the
operating system. To be sent, a message
has to be marshaled into kernel buffers.
The receiving side must perform the
inverse operation.

Multicasting. General-purpose mul-
ticasting mechanisms require group ini-
tialization and maintenance. In distrib-
uted transaction processing, multicasting
groups are typically dynamic and short
lived. In this case, the overhead of group
initialization can obliterate the perfor-
mance advantages of multicasting. Our
experiment shows that simulating mul-
ticasting inside the kernel reduces CPU
overhead.I2 Cheritod has proposed mul-
ticasting for many applications. We sug-
gest that the group (multicasting) ad-
dresses used during commitment time
be established as a function of the unique
transaction ID. This eliminates the need
for extra messages to set up group ad-
dresses.

N a m e resolution. Name resolution
can become an expensive and compli-
cated process. In general, we can have
three different name spaces: applica-
tion name space, interprocess commu-
nication name space, and network name

August 1991 63

space. The Raid system uses
a special protocol to map Raid
names into interprocess com-
munication addresses (UDP/
IP addresses). These address-
es have to be mapped into
network addresses (for ex-
ample, Ethernet addresses)
via a second address resolu-
tion protocol. For a local area
network, a straightforward
correspondence between log-
ical and physical communi-
cation addresses can be es-
tablished.

Enhancements. The Raid-
comm V.2 implementation
for local area networks em-
ploys low overhead, simple
naming, and transaction-
oriented multicast support.
Some of theseideas are based
on LRPC and URPC.l0 Be-
low, we briefly discuss Dorts.

8

6

h

E
v

a 4
E
F

V.2 - local

0 2o 0 200 400 600 800 1,000

Packet length (bytes)

Figure 2. Round-trip times in milliseconds.

naming, multicasting schemes, and com-
munication primitives. (Details can be
found elsewhere.’*)

Ports. Processes communicate through
ports, which are the basic communica-
tion abstraction. These ports reside in a
memory segment shared by the process
and kernel address spaces. Thus, data
can be exchanged without copying. This
method reduces copying by 50 percent
compared with other kernel-based IPC
methods. The mapped memory segment
contains a transmission buffer and a set
of receiving buffers. The number and
length of these buffers are specified by
a process at the time it opens a port. The
receiving buffers form a circular queue,
which is coherently managed by the
kernel and the process according to the
conventional producer/consumer para-
digm. Associated with the transmission
buffer and each of the receiving buffers
is an integer, which specifies the actual
length of the message. In addition, there
is a counter for the number of active
messages (messages that have arrived,
but which the server has not yet pro-
cessed).

Naming. Within a given node, ports
are uniquely identified by the triplet
<Raid instance number, server type,
server instance>. The other component
of a Raid address, the site number or
the transaction ID, determines the ad-
dress of the physical node for monocast

64

or the addresses of the group of nodes
for multicast. In the case of Ethernet,
we use only multicasting addresses for
link-level communication. Site numbers
or transaction IDS are used to build
multicasting addresses by copying them
into the four more-significant bytes of
the Ethernet address.

Multicasting. In physical multicasting
for processing a given transaction’s data
requests, each participant site sets a
multicasting address using the transac-
tion ID as its four more-significant bytes.
At commitment time, the coordinator
uses this address to multicast messages
to all participant sites. This avoids the
overhead of other multicasting meth-
ods. Currently, multicast addresses are
added or deleted by Raid servers. The
RC adds a new multicasting address for
a transaction when it receives the first
operation request for that transaction.
Under normal conditions, the AC de-
letes the multicasting address once the
transaction is committed or aborted. In
the presence of failures, the CC does
this job as part of its cleanup procedure.
In the future, we plan to manage the
multicasting addresses in the communi-
cation subsystem.

Communicat ion primitives. System
calls are provided to open and close a
port, to send a message, and to add or
delete a multicasting address. There is
no need for an explicit receive system

call. If idle, a receiving pro-
cess must wait for a signal
(and the corresponding mes-
sage) to arrive. To send a
message, a process writes it
into the transmission buffer
and passes control to the
kernel. If the message is lo-
cal, it is copied into a receiv-
ing buffer of the target port,
and the port’s owner is sig-
naled (the owning process’
ID is stored in the port’s data
structure). We use the Unix
Sigio signal for this purpose.
Otherwise, one of the exist-
ing network device drivers
sends the message to its des-
tination. The send operation
will be aborted if there are
not enough receiving buff-
ers. The destination address
is constructed as described
above, and the message is
enqueued into the device’s

output queue. When a message arrives
over the network, it is demultiplexed to
its corresponding port. Again, a signal
alerts the receiving process about the
incoming message. All this is done at
interrupt time, so there is no need to
schedule further software interrupts.

Performance of the communication
primitives. We measured the latency of
a user-to-user round trip of local inter-
process communication in Raidcomm
V.l and V.2. In version 2 it is 1.4 milli-
seconds, compared with the 4.4 milli-
seconds of the UDP socket used in ver-
sion 1. In version 1 the round-trip time
increases by a 1-millisecond average for
each kilobyte of data; in version 2 the
round-trip time increases by 0.34 milli-
second for each additional kilobyte. The
latency of a user-to-user round-trip re-
mote communication reduces from 5.1
milliseconds in version 1 to 2.7 millisec-
onds in version 2. The round-trip time
increase for each kilobyte of data also
reduces from about 3.0 milliseconds to
2.5 milliseconds. (See Figure 2.)

The socket-based IPC in version 1
and the new communication facility in
version 2 provide the same functional-
ity in a local area network environment,
and both are equally affected by signif-
icant network device-driver overhead.
Despite this fact, the new communica-
tion facility achieves improvements of
up to 50 percent. For multicasting, the
performance advantages of the new com-

COMPUTER

Charles F. Goldfarb, IBM Almaden Research Center

HvTime is being develoDed as an ment. DIUS the large caDital and orga- and SPDL. Some industrv standards

munication facility become
even more significant. The
sending time does not depend
on the number of destina-
tions. On the other hand, the
multicasting time for the
socket IPC method grows lin-
early with the number of des-
tinations.

Socket-based IPC does not
optimize for the local case.
Local round-trip costs are 68
to 88 percent of those for

1

~ x p ~ ~ r t pasiing

I I I I I I

__________ ~~ ~

Figure 3. Performance of a context switch on the Sun 3/50
running SunOS 4.0.

remote round trips. In the
new communication sub-
system, local round-trip times are only
35 to 50 percent of the corresponding
remote round-trip times.

Impact on transaction processing. We
ran the Debitcredit benchmark on a
single-site and a five-site system. For
the five-site system, we used the ROWA
(read-once, write-all) replication meth-
od. This limited remote communication
to the AC server. The benchmark con-
tained 115 transactions that had write
operations and required access to re-
mote sites in the two-phase commit pro-
tocol. Using Raidcomm V.2 reduced
the system time for transaction process-
ing by an average of 62 percent, bringing
theuser-time tosystem-time ratio to3:1.12

Other issues. In Raidcomm V.3, we
are addressing some problems with
XDR, scheduling, and context switch-
ing.

X D R . New applications require the
underlying communication subsystem
to provide cheap transportation for com-
plex data objects. The transmitted data
structures are usually bounded linear
buffers. We can build our local commu-
nication channel in shared memory to
avoid multiple encodingldecoding. Un-
like lower level buffer-based communi-
cation resources, which are one dimen-
sional and usually accessible only as a
whole, the shared memory segments
are multidimensional, randomly ad-
dressed storage resources just like the
main memory. These schemes can elim-
inate the overhead of XDR in local
communication.

Scheduling. Scheduling policies should
consider high-level relationships that
may exist among a group of processes.
Conflicts may exist between the optimi-
zation criteria at the operating system

and application levels. The application
should have some way to partially con-
trol CPU allocation. The sender and the
receiver process can collaborate under
some high-level mechanism provided
by the operating system to transfer the
thread of control. In Unix, for example,
the receiver process often goes to sleep
to lower its priority. It is then put in a list
and waits for the event (UO, signals)
that will grant it CPU time.

Context switching. We also conduct-
ed a series of experiments on context
switching, based on the idea of explicit
thread control passing. This is similar to
the hand-off scheduling in Mach, but
we’ve extended it to schedule ordinary
processes in Unix. Figure 3 shows round-
trip times for a context switch between
two processes. Raidcomm V.3 uses an
explicit control-passing mechanism and
shared memory. This reduces the laten-
cy of sending a high-level monocast Raid
message to 0.68 millisecond. It was 2.4
milliseconds in Raidcomm V. 1, and 1.1
millisecond in Raidcomm V.2.

verall, we have identified sev-
eral communication services 0 and mechanisms that can make

Raid efficient. Separate address spaces
can be used to structure a DTP system.
High interaction among servers also trig-
gers costly context-switching activity in
the system. Increasing availability
through distribution and replication of
data demands special-purpose multicast-
ing mechanisms. The idea of shared
memory between the kernel and user
processes is appealing, since it reduces
context-switching activity. The identifi-
cation of sites involved in transaction
processing for accessing replicated data
can be used in physical multicasting.

Our work has studied Unix-like oper-

ating systems. Obviously,
Unix is not the only system
on which commercialsystems
might be built, but it does
provide a good benchmark
for experimental study of
new ideas in an academic
setting. Our work has been
conducted in a local area
network environment. Simi-
lar studies must be under-
taken to identify and reduce
the overhead in wide area
networks.

We believe communica-
tions hardware and media technology is
advancing at a rapid pace. Our research,
along with related work in industry and
academia, is intended to promote soft-
ware advances.

Acknowledgments
Many students working on the Raid project

have contributed to the system’s communi-
cations facilities. Tom Muller, John Riedl,
and Brad Sauder contributed to the earlier
versions, and Yongguang Zhang is helping
us with the design of Raidcomm V.3. Zhang
has also helped in collecting data from the
designers of the various systems discussed in
the section on related work and in revising
the article to meet the page limit.

We thank each referee for giving us de-
tailed guidelines that helped improve the
article.

This research is supported by NASA and
AIRMICS under grant NAG-1.676, NSF
Grant IRI-8821398, and AT&T.

References
1. B. Bhargava and J. Riedl, “The Raid

Distributed Database System,” I E E E
Trans. Software Eng., Vol. SE-15, NO. 6,
June 1989, pp. 726-136.

2. B. Bhargava, E. Mafla, and J. Riedl,
“Communication in the Raid Distribut-
ed Database System,” Computer Net-
works and ISDN Systems, Journal of the
ICCC, Vol. 21, 1991, pp. 81-92.

3. A.Z. Spector, “Communication Support
in Operating Systems for Distributed
Transactions,” in Networking in Open
Systems, G. Muller and R.P. Blanc, eds.,
Springer Verlag, New York, 1986, pp.
313-324.

4. D. Duchamp, “Analysis of Transaction
Management Performance,” Proc. 12th
ACM Symp. Operating Systems Princi-
ples, ACM, New York, 1989, pp. 177-190.

5. D.R. Cheriton, “The V Distributed Sys-
tem,” Comm. ACM, Vol. 31, No. 3, Mar.
1988, pp. 314-333.

August 1991 65

R.F. Rashid, “Threads of a New Sys-
tem,” Unix Review, Vol. 4, No. 8, Aug.
1986, pp. 37-49.

A S . Tanenbaumet al., “Experiences with
the Amoeba Distributed Operating Sys-
tem,” Comm. ACM,Vol. 33,No. 12, Dec.
1990, pp. 46-63.

J.K. Ousterhout et al., “The Sprite Net-
work Operating System,” Computer, Vol.
21, No. 2, Feb. 1988, pp. 23-36.

L. Peterson et al., “The x-kernel: A Plat-
form for Accessing Internet Resources,”
Computer, Vol. 23, No. 5, May 1990, pp.
23-33.

10. B.N. Bershad, “High-Performance Cross-
Address Space Communication,” PhD
thesis, Tech. Report 90-06-02, Universi-
ty of Washington, Seattle, 1990.

11. K.P. Birman and T.A. Joseph, “Reliable
Communication in the Presence of Fail-
ures,” A C M Trans. Computer Systems,
Vol. 5 , No. 1, Feb. 1987, pp. 47-76.

12. E . Mafla and B. Bhargava, “Implemen-
tation and Performance of a Communi-
cation Facility for Distributed Transac-
tion Processing,” Proc. Usenix Symp.
Experiences with Distributed and Multi-
processor Systems. Usenix Assoc., Ber-
keley, Calif., Mar. 1991, pp. 69-85.

Enrique Mafla is a faculty member at Escue-
la Politecnica Nacional, Casilla, Ecuador.
His research interests include distributed
systems, database systems, communication,
and computer networks.

He received the BS degree in meteorology
from the Odessa Institute of Meteorology,

Bharat Bhargava is a professor in the De-
partment of Computer Science at Purdue
University. His research involves both theo-
retical and experimental studies in distribut-
ed database systems. He is working on adapt-
ability in distributed systems, replication
management, and new paradigms in commu-

Odessa, USSR, in 1981 and the MS and PhD
degrees in computer science from Purdue
University, West Lafayette, in 1988 and 1990,
respectively.

nications for high-performance transaction
processing. H e is the editor of Concurrency
Control and Reliability in Distributed Sys-
tems (Van Nostrand and Reinhold, 1987)
and a recipient, with John Riedl, of the best
paper award at the 1988 IEEE Data Engi-
neering Conference.

Bhargava is on the editorial board of ZEEE
Transactions on Knowledge and Data Engi-
neering and active in the IEEE Computer
Society’s Technical Committee on Distrib-
uted Processing.

Questions regarding this article can be addressed to Bhargava at the Department of
Computer Science, Purdue University, West Lafayette, IN 47907.

Call for Symposium on
Assessment of Quality
Software Development Tools

May 27 - 29,1992 - New Orleans, LoUiSiia~ Papers due: November 27,1991

In the last few years, there has been a major renaissance in the availability. kinds, and scope of software development W s . Modern tools “e in
large number and large varlety, creating a new challenge to software e n g i ~ ~ : han to choose the right W s . There is no dear and simple way today
to go about assessing tools and matching them to the needs of development organizations. This Symposium will revlew the problems of assessing
software development tools. sdldt case studlea of fool appiicatkns and thdr Impact on pmducllvlly, and examine stretegies fur the evaluation of future
tools. A particular focus will be on the assessment of tools to assist with producllvlty and quallty in software devebpment.

Papers appropriate to the symposium are: studies of existing tools automating m e task In software design, analysis, implementatbn, testing or
maintenance. The program annmiltee invites submission of completed original papers, not submitted to any other meeting or publication, addressing
(but not llmlted to) the folkwing areas:

Quality DeveiopmonnVDesign tools, CASE environments
Quality Analysis tool8
TestNwiticstionNaiidation toois
Design Automation tod.

Prototyplng tools
Knowidge-based I Expewi Systems
Program Understanding and Reverse Engineering tools
Experience with tool introduction and practical use

Please submit Rve (5) atples of full papers in English by Novombw 27,1091
to the Program Chair:

Ez Nahourall. IBM (798/089), 6321 San lgnado Avenue, San Jose, CA 951 19 USA
(408) 281-5741 eznah@sthrm7.iinusl .Ibm.com

For information and registration, mtact:
Judy Lee, IW. loo0 NW 51 St.. 6oca Raton, FL 33432 USA (407) 982-1048

important Dates:
Paper deadline: November 27,1991; Authors notification: F & N ~ 14.1992

Sponsored by: Tuhne University
In Cooperation: IEEE Computer Society TCSE @$@ 4)

General Conference Chair:
Dr. J. Browne. U. Texas Austin 8 Dr. J. Hassell, Tulane Univ.

Program Chair: Ez ”ural l , IBM

Program Committee:
D. 6eIanger. ATBT Bell Labs. F. Petry, Tulane Univ.
J. Cameron, LBMS U.K. C. Richter, MCC
E. Chikofsky, Progress Software S. ShaQ, U. lllinols - Chicago
Y. Fujlwara, Univ Tsukuba Japan D. Soni, Siemens
A. L. Goel, Syracuse Univ. L. Tripp, Boeing
J. Jenkins, City Univ. London others...
C. Lamy, IBM France

With Assistance: IBM Systems & Software Education

Charles F. Golrlfarb, IBM Almaden Resiwrch Center

HvTime is being develomd as an ment. DIUS the large caDital and orga- and SPDL. Some industrv standards

http://Ibm.com

